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ABSTRACT

For systems that are open-loop stable, there is a class of feedback controllers

that have the property that the closed loop system is stable and remains stable

in case actuator outages occur. Properties of a special subclass of these

controllers are discussed.
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INTRODUCTION: Consider the linear controllable system

2 Ax +Bu ()

where A is stable, i.e., the elgenvalues of A have negative real parts. The

class of state feedback regulators of the form

u = -BTPx (2)

where P satisfies the Liapunov equation

PA + ATP + Q = O, Q > 0 (3)

with (A, Q1i) observable .are of special interest because the closed loop
systems with related regulators of the form

u = -LBTPx, L - LT > 0 (4)

are stable. Such regulators may be considered to possess integrity with
respect to loss of imputs, that is, stability of the closed loop system is
maintained when one or more inputs is set to zero. This situation of loss of
inputs can be represented by an admissible L in (4). For example, the loss

of the first input may be represented by taking L to be

L 0 (5)

The class of regulators defined by (2) and (3) Is a subset of the class of

optimal state feedback controllers. This fact and the proof of the stability
for regulators of the form (4) are given below, followed by other results aimed

at characterizing the class of regulators of interest.
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4 Optimality of Regulators given by (2), (3) and (4): The regulator given

by (2) and (3) is the optimal regulator for (1) with respect to the performance

index

J {xT(Q + PBBTP)j + uTudt (6)

for P satisfying (3) and A being stable, P > 0, so that Q + PBBTP > O.
The optimal regulator for (1) with respect to (6) is given by

U a -Brpx (7)

A

with P being the positive definite symmetric matrix solution to the Riccati

equation

PA + ATP + Q + PBBTPPBBTp 0 (8)

'% -A
Thus, P = P, and the controls given by (2.) and (7) are the same. Now conspr the control
given by (3) and (4). If L> 0, this control is optimal with respect to the

performance Jndex.

S {xT(Q + PBLBTP) x + uTL'lu}dt (9)

since the optimal control is given by

U a -(L- 1)-I BTPx = LBTPx (10)

where 0 - PA + ATP + (Q + PBLBTP) - PB(L "1)'1 BTP
a PA + ATP + Q (11)

If L Is singular, the control v = Tu is optimal with respect to

j .XT(Q + PBLBTP) x + vTv)dt 2)

0

pk)cI a]
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for the system

- Ax + BLTTV (13)

where TTT = L (the pseudo-inverse of L) (14)

since v = - (BLTT)T Px (15)

and 0 PA + ATP + (Q + PBLBTP) - P(BLTT)(BLT T) Tp

= PA + ATP + Q + PBLBTP - PBLTTTLBTP

: PA + ATP + Q (16)

Thus, the closed loop system given by (13) and (15) is stable, i.e.

= (A - BLTT(BLTT)TP)x

= (A - BLTTTLBTp)x

= [A + B(-LBTp]x (17)

is stable. But (17) is the same closed loop system as that obtained using the

control (4) in the system (1). This verifies the stability properties or

integrity property of regulators of the special class of regulators described

in the introduction.

Characterization of Regulators Defined by (2) and (3). A simple method of
characterizing such regulators is to relate their closed loop parameters

to the closed loop parameters of optimal linear regulators. This method can

be applied to second order systems with a single input, but appears to be

intractable for general systems. For the simple example with

0 10

A a j, B > , a O, b>0 (18)

*Single Input systems also demonstrate that the set of controllers defined by
(2) and (3) is a conservative estimate of the set of controllers with integrity
because all stabilizing controllers, for single input systems possess integrity
with respect to input* outages.
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the closed loop characteristic polynomial is 12 + Cli + C2 " Consider the
two control laws, uL defined by (2) and (3), and uR defined by

S T x(19)
u R PRx

with PR > 0 satisying the Riccati equation

PRA + ATPR + QR " PRBBTPR a 0 (20)

The corresponding coefficients in the closed loop characteristic polynomial

are:

CIL -b + (q22/2b) + (q11/2ab), C2. - a + (q11/2a) (21)

CIR [b + q2 2R + 2( ia + q11R-a ] . C2R a 2 + q1 1 R (22)

The sets of possible coefficients for these two control laws may be d6picted

in the (CI,c 2) plane as shown in Figure 1. The set for uL is a subset of the
set for uR' The lower boundaries of these two sets coincide (the line

segment C2 - a, C1 > b). The upper boundary for the uR set is the segment

of the parabola C12 a b2 + 2(C2-a) with C1 > b. The upper boundary for the
UL set is the line segment, b(C1 - b) C C 2 - a, C1 > b which is tangent to

the upper boundary of the uR set.

C 2

Loer Boun~darie for u ' ad

b R Cl

FIGURE 1. Possible Closed Loop Characteristic
Polynomial Coefficients
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The sets of possible closed loop roots may also be determined for this example.

Figure 2 shows these sets for the case of a = b - 2. The negative real

axis is contained in the possible sets for both uLand uR. The remaining

set of possible roots for uL is a small subset of the set of possible roots for

UR. Although these results appear to be impossible to generalize, let us

notan interpretation of the sets of possible roots in this example that may

be generalized. If we introduce

Imls)

Boundary
for uR

Boundaries
for UR and uL

Boundary for

~Re(s)

Boundary
for UR

FIGURE 2. Possible Closed Loop Roots

a positive scalar parameter a in the matrices Q and say Q -AQ and

*QR a GQR and consider the loci of closed loop roots as a tends to infinity,



Page 6

these loci tend to zeros associated with Q and QR For this example there is

at most one such zero and it must be real and negative. In the optimal case,

the zero is a transmission zero associated with iand ts magnitude is arbitrary.

In the case where is obtained via (2) and (3) the magnitude of the zero

associated with Q is restricted to be less than b.

In this example the root locus of interest is the locus of roots of the polynomial

2A A

p(s.,) - s2 + 2[b + (a1 2ab)(q11 + aq22)] + a + (*/2a) qll (23)

As c tends to infinity, the polynomial may be factored as

p(s.s) - [s + bq 11q +aq22) + O(al)][s + (*/2ab)(qll+aq22) 
+ 0(1)] (24)

so that one root tends to -bq11/(q11+aq22) Z - b and the other root tends

to Infinity.

Let us now return to the general case for the system (1) and introduce the

parameter, o, into the control law, i.e.

u - -OBTPx (25)

with P given by (3 Such a system may be characterized by asymptotic properties

as the parameter, a, tends to infinity. The return difference matrix is

T(s) - I +aBTP(sI-A)'lB (26)

Algebraic manipulation leads to the result that

TT(-s) T(s) I I + a&BT(-s-AT)'IQ(sl-A)'lB

+ a2 BT (-sI-AT)- PBBTP(sI-A)-lB (27)

Let the dimension of x be n and the dimension of u be m. For simplicity,

let us assume that BTpB has full rank. A generalization to the case in which

the rank of BTPB is less than m is of Interest but is also somewhat more

complicated. If we let s a aa in (27) and let a tend to infinity, we obtain
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TT(-w) T(co)e! - a- BTQB o- BTPBBTPB
-2 a21 - BTPBBTPBJ (28)

We also note that

fc(-s)*(s) - fo(-S) *O(s) det [TT(-s) T(s)] (29)

where , c(s) denotes the closed loop characteristic polynomial and *(s)
denotes the open loop characteristic polynomial. Since the closed ?oop

system is stable for all a a 0, we can deduce from (28) and (29) that

m closed loop poles tend to infinity and are asymptotic to

s ,- iBTpBBTPB), i=l,2,...,m (30)

- , ;(BPB). 1-1,20... ,m

where X(A) denotes an etgenvalue of the matrix A. The remaining n-m closed loop

poles approach finite values which are the left half plane images of the zeros
of the determinant of BTP(sI-A)'IB. Denote these left half plane finite zeros
by s,, i-l,2,...,n-m. The eigenvectors associated with the finite zeros are

orthogonal to BTp and are given by

xO. (sO I-A)-1 BY o, i-l2,....,n-m (31)

with the U0 determined by

BTP(sO I-A)"  B o, - ,2,...,n-m (32)

The etgenvectors associated with the asymptotically infinite eigenvalues are

given by

U B V i-1,2,...9, (33)
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with i0idetermined by

TBTpB 9 1=I ,2,... (34)

These results are similar to those obtained for optimal regulators.

For the optimal regulator, however, the asymptotic eigenvalues and eigenvectors

are related to the weighting matrices QR and RR. Here, unfortunately the

relation is to P which is in turn related to Q, but a direct relationship

to Q is not available.

In the special case for which BT - CO BT] with B, an mxm nonsingular matrix

which would be the common representation for systems with actuator dynamics,

we can proceed one step further. In this case, let %r, B1''. Then from

(33)

B 1 0,4 1=1,2,...,.m (35)

and from (34)

B- -BBT (36

v B1(BPB) 1 "1 P4 vi' 1-1,2,...,m (36)

where P4 is the lower right mxm block of P. If we set N -v 1,v2 "'".,vJ and A

diag ()7), then (36) may be written as

NA -B B161TP4N (37)

Thus,

P4  -(BIB,) /NANJ

and the fact that P4 is symmetric implies constraints on N and A, which may be

interpreted as constraints on actuator couplings and relative bandwidths.

*"Quadratic Weights for Asymptotic Regulator Properties", C.A. Harvey, 6. Stein,
IEEE Trans. on Auto. Control, Vol. AC-23, June 1978.

* ri
*
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0The fact that the finite zero, s°, was constrained in the simple example is

a property that is common to the general case. Adding 2sOP to both

sides of equation (3) and rearranging yields

P(soI-A) + (sI-A)TP - Q + 2soP (39)

Multiplying equation (39) on the right by Vo = (s A) * and on the left

by (vo)T yields

(PO)TBTP o v T Q + (40)

But, BTp Vo = BTP(:sol-A) "1 Bui = 0 from (32), so that

o T o
-s (vi) Q v1  (41)

S 2(vO)T p vo

and it follows that

js~j < ~(42)

where 7(Q) is the largest singular value of Q and g(P) is the smallest singular

value of P. Thus, (42), shows that the magnitudes of the finite zeros are bounded,
but the bound involves P and Q. Since P is a function of A and Q, the bound is
an implicit function of A and Q. Unfortunately, the explicit dependence is not

evident.

An alternate characterization of controllers defined by (2) and (3) can be derived

by considering the optimal controllers for (1) with respect to the performance

index

. *o (OxTQx + uTu)dt (43)

-, .. ... I0



Page 10

with B a small positive scalar parameter. In this case the optimal controller

can be represented as

U -BT(j 81 P)x (44)

where

- o ao as

( 0 BPi) A +AT(;O 0 ) + ~ a~ P) B BT(. 145

Equating terms of like powers of 0 in equation (45) yields

TT

POA + ATPo P e 8 BT Po0 (45a)

+ ATP1I + 0 oe BTP1 + P1 B BTP0  (45b)

etc.

With A being a stable matrix, PO 0, so that the right hand side of (45b)

is zero. Thus, the equation for P1 is the same as equation (3), and controllers

defined by (2) and (3) may be viewed 4 multiples of first order approximation

to optimal controllers, i.e.

CO
U 1 -BTP X M (46)

u-BP0 0 oiI (6

1-0

Another way of describing this characterization is to consider the controller

given by (2) and (3) with Q in (3) replaced by BQ. Then this controller is the

first order approximation to the controller given by (44) as 1 tends to zero.

This implies that the closed loop root loci (parameterized with 0) associated

with:tose controllers are tangent at S- 0 whtdh corresponds to the open loop

roots.


